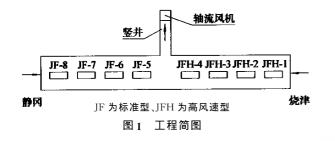
文章编号: 0451-0712(2005)02-0179-04

中图分类号:U453.5

文献标识码:B

隧道通风用射流风机的高风速化

郭建文 编译


(铁道第二勘测设计院 成都市 610031)

摘 要:为了减少射流风机的设置数量,有效降低工程成本和维护管理费用,日本在国道 150 线 \mathbb{I} 期工程新日本坂隧道,就高风速型射流风机的有效性、安全性与标准型射流风机进行了对比试验。试验结果表明与标准型射流风机相比,高风速型升压力提高 30%,并且对走行车辆不产生其他影响。

关键词:隧道;风机;风速

1 工程概况

新日本坂隧道位于静冈市小坂~烧津市野秋之间(全长 $3\,104\,\mathrm{m}$,断面 $47.\,3\,\mathrm{m}^2$),采用纵向通风方式进行隧道通风排烟。隧道中部竖井设轴流风机,竖井两侧的隧道顶部设射流风机以调节竖井两侧的风量,工程情况见图 $1\,\mathrm{fm}$

2 设备配置

新日本坂隧道通风机械设备配置情况见表1。

3 试验情况

由于在公路隧道首次采用高风速型射流风机, 为检验其有效性和安全性,进行了高风速型射流风 机的单机性能试验和隧道中的工况试验。

隧道中的工况试验包括:

- (1)风速分布测定:扩散距离,对走行车辆的影响:
 - (2)升压力、升压系数和升压距离:
 - (3)逆风起动时风速的过渡现象。
- 3.1 工厂内单机试验

表 1 新日本坂隧道通风机械设备配置

序号	设备名称	型号及规格	数量/台	单位功率/kw	附 注
1	轴流风机	∮3 550 mm,278 m³/s 以上	2	305	
2	高风速型射流风机	JFH1 000, \$\phi\$1 300 mm, 35 m/s	4	30	全长 4 250 mm
3	标准型射流风机	JF1 000, \$\phi\$1 300 mm, 30 m/s	4	30	全长 4 900 mm

在工厂进行了性能试验、噪音测定、起动电流测定。性能试验按标准 JISB8330 进行,噪音测定按标准 JISB8346 即距风机进口 $1.03~\mathrm{m}$,风机侧 $1.0~\mathrm{m}$ 进行。

- 3.2 隧道内试验
- 3.2.1 试验项目

在隧道内进行了断面风速测定和压差测定。试

验情况与检验项目见表 2 和表 3。

- 3.2.2 试验条件
 - (1)试验对象。

表4列出了试验风机的主要规格和工厂检验数据。本文射流风机的出口平均风速采用了工厂检验数据。

(2)射流风机的设置。

表 2 测 3	定情况与	试验	概要
---------	------	----	----

—————————————————————————————————————	类型	隧道平均风速/(m/s)	运转	测定项目		概 要
,则 足 间 /兀 	突型		状态	风速	压差	似 女
Case	高风速型	+4.0	顺风		0	测定顺风时的风速分布和升压力
A	标准型	+4.0	顺风			(스크리 1 / 4 P 다 다 오르기에 많다 하지 않다 크지 만지
Case	高风速型	+3.3	逆风		0	测定逆风时的风速分布和升压力
В	标准型	-2.6	逆风			께도도(Ming ng Miss 기 기기 제기 IE 기
Case	高风速型	+3.8	逆风	0		测定逆风起动时断面的风速
С	标准型	-3.7	逆风			测足区风险切时 副田时风速

- 注:1 "+"为烧津→静冈,"一"为静冈→烧津。
 - 2 射流风机的吹出方向与隧道平均风速方向相同时为顺风,相反时为逆风。

表 3 研究项目与测定情况

序号	研 究 项 目	Case A	Case B	Case C
1	顺风时的升压力、升压系数及 升压完了距离	0		
2	逆风时的升压力、升压系数及 升压完了距离		0	
3	由于高风速化对走行安全性的 评价	0	0	0
4	逆风起动时风速过渡现象			0

本隧道高风速型及标准型射流风机基本设置间隔均为140 m,与隧道壁的距离分别为110 mm(高风速型)和130 mm(标准型)。

3.2.3 测定方法

(1)断面风速测定。

将1个隧道断面分为13个测点同时测定,以确定断面风速分布的变化情况。如图2所示,用红外线风速计把探头固定在专用支架上,并在一定范围内

表 4 试验风机的王要技木规格和上厂检验数据

	名	称	高风	速型	标准型	
	1	ተመ	JFH-1	JFH-2	JF-5	JF-6
直径/mm		1 (1 030		030	
规	出口平均风速/(m/s)		34.5	34.5 以上		以上
	全长/mm		4 2	4 288		250
格	外形/mm		1 2	1 200		200
	风量		28	28.5		25
	工程检查时出口	正转	34.6	34.5	30.7	30.5
	平均风速/(m/s) 反转		34.6	34.6	30.7 30.5	
悬挂方式		倒置悬挂方式		螺栓拉杆方式		

(1)

移动进行测定,并同时测出温度和湿度。

(2)压差测定。

将 2 个皮托管用软管分别与压差计相连,一个皮托管固定,移动另一个皮托管进行压差测定。

(3)稳定时间。

风速计的位置变化后设置了 3 min 的稳定时间,运转状态变化后设置了 10 min 的稳定时间。

3.2.4 测定结果的整理方法

(1)隧道内平均风速的计算方法。

隧道内平均风速为射流风机射流充分扩散后断面中13 个点的平均值,即

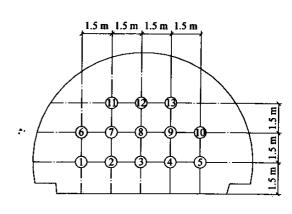


图 2 测定探头配置

式中 $:V_r$ 为隧道内平均风速 $:m/s:V_r$ 为断面内各测点的风速值:m/s:N 为断面内的风速测点数。

(6)

(2)空气密度的整理方法。

空气密度由各种情况下测定的静压平均值计算 得出:

$$\rho = \left[\frac{1.293 \times P}{(1+0.00367t) \times 760} \right] \times (1-0.378 \times \phi \times e \times P)$$

式中:P 为静压,mmHg(760 mmHg=101 325) Pa):t 为温度, $C:\phi$ 为相对湿度:e 为饱和蒸气压,

mmHg.

饱和蒸气压由下式计称:

273.16); $T_s = 373.16$, K_o

 $\lg e = -7.90298(T_s/T - 1) +$

5. 028 08 $\lg(T_s/T) - 1.381 6 \times 10^{-7} \times$

 $[10^{11.344(1-T/T_s)}\!-\!1]\!+\!8.\,132~8\!\times\!10^{-3}\!\times\!$

$$[10^{-3.49149(T_s/T-1)}-1]+\lg e_{ws}$$
 (3)

式中:e 为饱和蒸气压, $hPa(h=10^2)$; $e_{ws}=1$ 013.246 $hPa(h=10^2)$;T 为温度,K,(T=t+

(3)射流风机的升压力和升压系数的计算。

升压力 ΔP_j 由式(4)算出,升压系数 K_j 为实际 升压力与理论升压力的比值,由式(5)求得,理论升 压力 ΔP_j 由式(6)求得。

$$\Delta P_{j} = \Delta P_{s} + \lambda \times \frac{L}{D_{r}} \times \frac{\rho}{2} \times V_{r}^{2}$$
(4)

式中: ΔP_j 为实验升压力,Pa; ΔP_s 为实测的压差,Pa; λ 为隧道壁摩擦损失系数(通过试验 λ =

0.018);L 为测点 P_n 与测点 P_1 之间的距离,m; D_r 为隧道计算直径, D_r =7.0217 m; ρ 为密度, kg/m^3 ; V_r 为隧道平均速度,m/s。

$$K_{j} = \Delta P_{j} / \Delta P_{j}'$$

$$\Delta P_{j}' = K_{j} \times \sum_{i=1}^{n} \frac{1}{2} \rho V_{ji}^{2} \times \frac{\phi_{i} \times (1 - \Psi_{i})}{(1 - \phi_{i})^{2}} \times$$

$$(5)$$

 $(2-3\times\phi_i+\phi_i\times\Psi_i)$

式中: ΔP_j 为射流风机的理论升压力, Pa ; ΔP_j 为射流风机的实验升压力, Pa ; n 为射流风机的台数; A_j 为射流风机的吹出面积, m^2 ; V_j 为射流风机的吹出风速, $\mathrm{m/s}$; $\phi = A_j/A_r$, $\Psi = V_r/V_j$, A_r 为隧道断面积, m^2 ; V_r 为隧道内风速, $\mathrm{m/s}$; ρ 为空气密度, $\mathrm{kg/m}^3$; K_j 为升压系数。

3.3 测定结果与分析

3.3.1 工厂内单机试验结果

表 5 列出了工厂内单机试验结果,其结果完全符合说明书的技术规格。

表 5 工厂内单机试验结果(JFH-1号风机)

项目	平均风速	轴功率	效 率	起动电流	噪音
额定值	34.5 m/s 以上	30 kW 以下	75%以上	230A 以下	90dB(A)以下
试验值	34.6 m/s	29. 47 kW	75.3%	222A	89dB(A)

3.3.2 风速分布测定结果

现场风速分布测定结果见表 6。

表 6 风速分布测定结果

Case No.	吹出方向	型式	隧道平 均风速/(m/s)	扩散结 束距离/m	V ₁ /(m/s)	V ₂ /(m/s)	$\frac{V_1 - V_2}{(\text{m/s})}$	V_1 与 V_2 差最大时 距风机距离 $/\mathrm{m}$
Case A 順风	間番豆	高风速型	4.00	100	2.00	4.00	2.00	40
	川東ノへい	标准型	4.06	100	1.86	4.10	2.24	40
Cons. P	逆风	高风速型	4.03	30	7.84	6.41	1.43	20
Case B	上八	标准型	3.94	30	7.41	5.83	1.58	20

注:(1)射流风机的吹出方向与隧道平均风速相同时定义为顺风,相反时定义为逆风;

- (2)扩散结束距离是指从射流风机吹出位置至距路面 1.5 m、3 m、4.5 m 高度处风速相等时的距离;
- $(3)V_1$ 为距路面 1.5 m 处的平均风速, V_2 为距路面 3 m 处的平均风速。

因为要考虑对走行车辆的影响,表中列出了同一断面内距路面 1.5 m 与 3 m 处的速度变化情况, 其速度差最大时距风机的距离以及速度差。

从这些图表中(本译文将图省略)得到以下的 结论。

(1)高风速型与标准型的扩散结束距离相同,高 力力数据 风速化不影响射流风机的设置间隔。 (2)高风速型射流风机附近不同高度的风速变化量与标准型相同,风速差以及风速差最大时的位置距风机的距离也相同。所以,高风速化没有增加对走行车辆的影响。

(3)逆风运转时对射流风机进口处的风速分布 有影响(轴流风机运转而射流风机处于制动运转状 态时)。 (4)本隧道未设步行道,但对于有步行道的隧道,当风机以隧道内4 m/s左右顺风进行运转时,高风速型与标准型几乎没有区别,所以带步行道的隧

道也能采用高风速型射流风机。

3.3.3 升压力、升压系数等测定结果 升压力测定结果见表7。

表 7	升压	力测	定结果	f
-----	----	----	-----	---

Case No.	吹出 方向	型式	隧道平均风速 m/s	理论升压力 Pa	实测升压力 Pa	升压系数	升压完了距离 m
Case A	顺风	高风速型	4.00	23.8	20.3	0.85	80
Case A	川火 /へい	标准型	4.06	18.0	15.9	0.88	100
Case B 逆原	** 🖸	高风速型	4.03	30.1	25.8	0.86	30
	と 八	标准型	3.94	23. 3	20.0	0.86	30

注:射流风机的吹出方向与隧道平均风速相同时定义为顺风,相反时定义为逆风。

由以上图表中可得出以下结论:

- (1)顺风时,升压力因高风速化上升了近 30%, 并且升压完了距离较标准型变短了:
- (2)高风速型与标准型射流风机距隧道壁面的 距离分别为110 mm、130 mm(为试验另一种安装方式的需要),由于间隙较小,所以较小的差别(20 mm)就使得标准型的射流风机升压系数略高一些。

3.3.4 过渡现象测定结果

通过射流风机逆风运转时风速变化情况的测定结果可以看出:高风速型与标准型对走行车辆的影响基本相同。

3.4 试验结果

通过本次在新日本坂隧道进行的风速和压差测 定试验,就高风速型射流风机升压力及对走行车辆 的影响与标准型进行了比较验证,其结果如下.

(1)由于高风速化升压力提高30%;

- (2)高风速型与标准型的扩散结束距离基本相同,设置射流风机处的速度分布也没有区别,高风速化对走行车辆的影响极小:
- (3)在射流风机的设置高度上(建筑限界上部), 高风速型的风速变化较大,但在车辆通行范围内与 标准型的风速及变化情况相同,高风速化对走行车 辆不产生影响。

4 结语

本次试验验证了采用高风速型射流风机的有效性和安全性。采用高风速型能适当减少射流风机的设置数量,与采用特殊的安装方式等一道可有效降低工程成本和维护管理费用。本试验为今后隧道通风设计提供了有益的启示。

- 译自日本トンネル技術協会誌《トンネルと 地下》2003 年(平成 15 年)11 月刊。

中尼直通车拟于5月1日开通

去年以来,西藏交通部门受交通部委托,与尼泊尔交通代表团就开通中尼直通车事宜进行了谈判,形成了备忘录。目前,双方已经初步商定于2005年5月1日开通中尼直通车。

中尼公路是我国与尼泊尔友好往来的桥梁,是西藏地区唯一的国际公路通道。自1965年正式通车以来,为联系拉萨、日喀则、樟木口岸等地物资运输和经济交流作出了不可取代的贡献。传统的中尼公路北起拉萨市当雄县的羊八井,经日喀则、拉孜、定日、聂拉木,到樟木口岸过友谊桥进入尼泊尔,终点为尼泊尔首都加德满都。1990年起,中尼公路改行为现在的自曲水县沿雅鲁藏布江北岸往西到日喀则,再接上原中尼公路。这条新线的开辟不仅缩短了里程,也不必翻山越岭,更加活络了拉萨与日喀则两地间的交流。

一直以来,为维护这条国际通道、西藏经济发展线,西藏自治区交通厅把中尼公路维修改建工程作为重点项目,加强投资、加强管理,于前年启动了中尼公路曲水到大竹卡段整治改建工程,并于去年提前完成该项目年度计划。,令年,又如期开工中尼公路日喀则到拉孜段整治项目,预计今年7月全部完工通车。

万方数据