论城市道路的人性化规划设计

翁振合

(福州市规划设计研究院,福建 福州 350003)

摘 要:城市道路规划设计直接关系到人(车)安全和人居城市环境,通过剖析规划设计中存在的条件限制和问题, 论述从规划控制至细部设计体现以人为本的思想,以供同行参考。

关键词:城市道路;规划;设计;以人为本

中图分类号:U412 文献标识码:A 文章编号:1009-7716(2006)01-0005-04

0 前言

道路是自行车行人与车流行驶用地的统称,位于城市建设范围的道路称为城市道路。城市道路是一个城市的骨架,是展现一个城市风貌的重要组成部分。城市道路有着;(1)功能多样;(2)组成复杂;(3)行人交通量大;(4)道路交叉点多;(5)沿线两侧建筑密集;(6)景观要求高等特点。由以上特点可以看出城市道路规划设计是一项综合性强,内容繁杂的工作。评价一条城市道路好坏,不仅看其规型设计中对"人"(车)的关心,从宏观控制到细部处理的精心程度。而所谓"人性化"含义即:在城市道路的规划设计中如何把车(机动车和非机动车)、人(行人和司机)、周围环境三者有机地结合起来一起研究,从而使道路交通达到安全、快速、经济、便利和舒适的要求,并为城市营造优良环境。

1 道路规划性质与规划宽度——前提条件

1.1 道路规划性质

城市道路的规划是城市规划的重要组成部分,城市规划是随社会生产力发展而发展的,是动态的与时俱进的。1995年《城市道路规划设计规范》把城市道路划分为:(1)快速路;(2)主干道;(3)次干道;(4)支路,四个功能不同的等级。此外还可以有自行车专用道、公交专用道、轨道交通、商业步行街等。而在上世纪80年代的城市规划文件中可以看到"商业性干道"、"综合性干道"、"交通性主干道"的术语。可见城市道路规划从分类上发生了改变。

"道路一旦建成即固定,并占据一定城市用地,

| 见城市道路规划从分类上发生了改变。

沿街建筑物和地上、地下管线等有关市政设施也都跟着道路的布局而相应固定下来。"[1]这说明: 规范可以修订,规划可以修订,而已规划并建设的道路的性质、规范红线宽度大多是固定下来了。这种情况大多出现在特大城市与大城市的老城区和上世纪90年代之前建设的城市道路。

有关规划道路性质的问题源于对城市道路称之 为"路"还是"街"的思考,应如何协调好交通需求与 城市环境的问题。"自盛唐以后,由于商业和手工业 的大发展,出现了店铺为主的商业街道,沿街两旁还 划出了种植地带,使古代城市道路的面貌起了重大 变化。"[2] 这段文字告诉我们"街"的来由。"我国习 惯将主干道建设得很宽,中间车行道上的汽车和自 行车交通量很大,在主干道的两旁设置大型商店和 公共建筑,吸引大量人流,目前许多城市采用几道栅 纵向分隔的办法,以阻止行人穿越道路,来提高车速 并保证交通安全,但对商店顾客和公共交通乘客形 成很大不便。为此,希望将吸引入流多的商店和公 共建筑设置在次干路上,使主干路主要发挥通行车 辆的交通功能。"[1] 新规范明确早期规划建设的"商 业性主干道"的事实,和把"街"式的道路加纵栅改造 成兼有交通性主干道的弊端,对城市经济和城市风 貌有一定的影响。因此在道路规划中应慎重考虑商 业、公建中心区的道路交通定位,而对城区商业性主 干道在采用"加纵栅"法改造道路时,应特别关心行 人、自行车讨街、公交换乘的需求,合理地设置人行 (自行车)过街地道或过街天桥。把行人、自行车交 通组织在另一个连续的层面内。使市民的步行交通 不再干扰快速的车辆交通。

1.2 关于道路规划宽度

随着时代的发展和城市建设突飞猛进和经济水平巨大变化,交通流量远远超出早期规划的预测。 道路设计经常遇到的问题是道路规划宽度不足以满

收稿日期:2005-11-08

作者简介: 翁振合(1956-), 女, 上海人, 高级工程师, 副总工程师, 从 事市政工程设计与技术管理工作。

足现行《城市道路设计规范》和《城市道路规划规范》 的要求。主要表现在车道宽度,分隔带宽度和道路 绿化率不能满足要求。

现依据《城市道路设计规范》(CJJ 37-90),第四章"道路横断面设计"的要求和《城市道路绿化规划与设计规范》(CJJ 75-97),对于大城市主、次干道不同设计车速所对应的符合规范要求的宽度列表于表1和表2。

表 1 大城市主次干道符合各项指标要求的道路 抑制需度素(各级道路)

从机见及4(百数运输)								
计算车速(km/h)	60			50			40	
设计车道数(双向)	4	6	8	4	6	8	4	6
机动车道宽度 (单向)(m)	8, 25	11.5	15, 5	7, 25	11.5	15.5	7, 75	10, 75
非机动车道宽度 (m)	3. 5	3. 5	3, 5	3, 5	3, 5	3, 5	3.5	3.5
人行道宽度(m)	3	3	3	3	3	3	3	3
功能帯宽度 (単向)(m)	14. 75	18	22	13, 75	18	22	14. 25	17, 25
绿化率(%)	0.2	0.25	0.3	0.2	0.25	0.3	0.2	0.25
绿化带总宽(m)	7.38	12	18.86	6,875	12	18,86	7, 13	11.5
道路总宽(m)	36, 9	48.0	62.9	34.4	48.0	62.9	35.6	46.0

表 2 大城市主次干道符合各项指标要求的道路 规划宽度表(商业街道)

死机是是权(同亚国道)								
计算车速(km/h)	60			50			40	
设计车道数(双向)	4	6	8	4	6	8	4	6
机动车道宽度 (单向)(m)	8.25	11.5	15. 5	7. 25	11.5	15.5	7, 75	10, 75
非机动车道宽度 (m)	4, 5	4.5	4.5	4.5	4.5	4. 5	4.5	4. 5
人行道宽度(m)	5	5	5	5	5	5	5	5
功能帶寬度 (单向)(m)	17.75	21	25	16.75	21	25	17, 25	20, 25
绿化率(%)	0.25	0.3	0.3	0.25	0,3	0.3	0,25	0; 3
绿化带总宽(m)	11.83	18	21.4	11, 2	18	21, 4	11,5	17.4
道路总宽(m)	47.33	60	71.4	44.7	60	71.4	46	57,9

注:表中4车道,8车道接小车道与混行车道各半、6车道按2个小车道,4个混行车道计算。

而早期规划的城市道路宽度往往小于上表较 多,如1级主干双向6车道规划红线宽仅40m,与 表1、表2对比,可知悬殊很大,道路用地紧张,道路 设计前提条件就受到限制。

2 道路横断面设计应体现人性化

城市道路横断面设计是道路设计中的重要内容。 也是体现人性化设计重要组成部分。道路横断设计 中首先应确定行车安全的需要和行人通畅安全的需 要,应结合平、纵面线形来确定横断面形式,以确保人 (车)安全。这是设计体现人性化设计的最重要步骤。

在我国大城市有很多三、四块板形式的主、次干

道,但一块板式道路横断面在一些城市的主干道上仍然沿用着,如:青岛市的香港东路,8 车道,中间只设双黄线,机动车与非机动车道之间设实线分隔,宽阔的绿化带集中在人行道上,看上去给人宽敞的空间和美丽的视觉感受,景观效果很好,安全舒适。但这种形式横断面要保证安全的条件有四条;(1)市民交通意识强,遵守交规;(2)平面线形好,视距通畅;(3)机,非车流饱和度低,交通服务水平高;(4)非机动车量少。

在法国举世闻名的香榭丽舍大街,10 车道,也 是一条一块板式横断面的街道,其中央双黄线两线 间隔约2 m,无分隔物,两侧宽阔的人行道如同步行 街,有长排喝咖啡区和宽广的绿荫带,是一条广场般 的街道。

按《城市道路设计规范》第 4.3.2 条,计算行车 速度大于或等于 50 km/h 的主干路宜设中间分隔 带,困难时可采用分隔物。笔者从工程实践出发,当 平面线形有会车视距不足的小半径弯道路段时,应 设中央分隔,以确保行车安全。

如前所说,由于历史的原因,存在规划红线宽度 不足以满足现代交通的需求的情况,许多大城市出现高架路式道路,而一些城市在市中心区街道上则 采用设纵栅分隔加大通行能力,同时用压缩绿化、人 行和自行车道宽度的方法来增加机动车道。有些城市把自行车道与人行道并道,使行人缺乏安全感,不符合人性化设计,同时亦不符合交通组成之——自行车族的需要。

在许多城市虽然随着公交发展,小轿车作为私家交通工具迅速增长,自行车交通占总量的比例呈下降趋势。但自行车是一种节能环保的交通工具,将客观大量地存在。从表3可以看出国内部分城市自行车出行方式的比例。[3]

表 3 各城市自行车出行比例

城市	福州	石家庄	杭州	长钞	南京	武汉
年度	1999	1998	1997	1998	1999	1998
自行车 比例(%)	37.32	54.38	60, 78	23, 2	40,95	29.11

可见道路横断面设计仍应保留传统式自行车 道。

对于城市快速路横断面,主路与辅路之间可以 在一个平面上,也可在局部路段采用阶梯式横断面, 这种变化的断面有利于半通视过街地道的布设。

3 行人过街安全

3.1 人行过街通道的设置

行人过街通道有地面既马线式和自行车人行天桥或地道的形式,人行过街通道的位置应结合行人过街的需要,一般在道路两旁吸引大量人流的学校、商场、剧院等公用建筑的附近应布置,同时要考虑公交换乘的需要。行人过街通道间距应根据需要确定,如布置不当,必然给行人过街带来不便,其至发生"翻栅栏过街"的不文明和不安全的现象和"打的七过街"的笑话。因此,合理地设置行人过街通道是体现设计以人为本的重要内容。

3.2 行人过街通道的细节设计

无信号灯班马线通道应在来车方向给人车一个安全视距,视距区内绿化应配合种植低矮灌木或草皮。车道数大于等于双向6车道时应在中央画出黄线待行区,使行人过街不必一口气通过,尤其对老幼过街有一个安全感。如图1所示:

道路中央设连续分隔带(物)时,行人过街构造物一自行车、人行天桥或地道就要与道路相匹配建设,设计上是选择建天桥还是建地道,一般考虑建设条件、安全(包含治安方面)、方便行人、环境影响四个方面。其中哪方面成为决定因素视道路所处城区位置特性确定。

天桥与地道坡道设计直接关系到人行走的舒适性,兼顾自行车过街时一般采用坡道与梯道结合,图 2(a)中示两侧设坡道时,坡道宽度取 0.4 m 可让困难行人抓握扶手,图 2(b)中示中间设坡道形式;当自行车通过量大时应在两侧与中间均设坡道。图 2

(c)表示 25%坡道对应梯步较接近人行习惯的步幅。

偏远城区结合地方治安,宜尽量缩短通道长度 或修建半地下式通道。

4 道路设计与城市环境相关因素

4.1 交通要顺畅

城市路网是城市平面的骨架,道路功能首先是交通,所有景观因素均要在道路功能正常的前提下,即交通顺畅的前提下才能谈得上,试想在人车处于拥堵状态之下,有谁还有心情欣赏景观,因此城市环境景观首先是交通要顺畅。

4.2 道路绿化率

当一个城市的道路绿化率能达到《城市道路绿 化规划与设计规范》中第3.1.2条的要求,即达到前 文中表1、表2中绿化宽度时就能提供很好条件,使 道路绿化成为城市一道亮丽的风景线。

4.3 道路上的构造物

构造物主要有立体交叉、高架道路、人行天桥、 人行地道等。

立体交叉选型首先考虑交通需求,但同时应考 虑立交规模对城市的影响,一般立交规模越大,对其 周边环境影响越大,如果在一个小城市的中心区建 一座大型立交,这肯定会使市民感到突兀,给城市环 境带来负面影响。

有在大城市中心地带结合地形修建中小型部分 有通型立交,解决了交通问题又改善周边环境的实

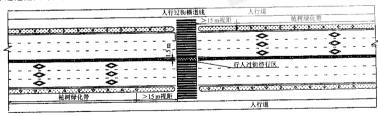


图1 行人过街通道

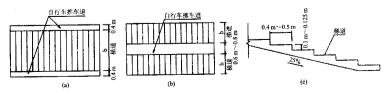


图 2 天桥与地道坡道设计

例(立交桥梁面积仅5000~10000 m²)。

高架道路设在城市中心区,应重视其对环境的 影响,注意高架桥的宽度、跨度、高度对地面道路上 人、车视觉的协调。如广州的内环高架,桥下净空 7 ~9 m,高架桥下可建人行天桥。而早在上世纪 70 年代修建的某些高架路由于净高低、占路宽比例大, 对地面上的人、车造成压抑感。

人行天桥对城市空间环境是有影响的,中心区 街道上,不宜布设得很密集,而采用地道对环境影响 较小。

4.4 路面结构对城市环境的影响

路面结构形式分刚性路面与柔性路面两大类。 城市道路路面结构形式对城市环境的影响是十 分显著的,在上世纪90年代以前许多城市道路在选 择路面结构类型时侧重经济效益而选用刚性路面, 如80年代福州市修建的国货东路和90年代初福州 市二环线(东西北环)、北京的三环、四环路都采用了 刚性路面结构。

上世纪 90 年代末至今,大中城市建设的经验使 决策和设计工作者选用路面结构时,更加注重路面 结构对城市环境影响和行车的舒适性,多数采用柔 性路面结构。针对旧水泥混凝土路面的改造,多数 采用"白加黑"的方法,即加固旧水泥混凝土路面作 为基层,其上加铺沥青混凝土路面。

随着先进工业产品的不断出新,各种改性剂和 路用工程纤维对刚性路面和柔性路面性能的改善, 使城市道路路面结构设计有了更多的选择。这些都 是提升城市道路品质,体现城市人性化设计的进步。 4.5 城市道路应注重导观设计

随着城市建设发展,道路景观越来越受到重视,许多大城市把中心城"街"式道路的绿化、景观设计划分出来,由绿化、景观专业人员进行设计,城市道路景观设计包括,道路绿化带设计、滨江景观道路栏杆,桥梁栏杆设计,道路构造物景观设计、人行道铺装设计,人行道上小品设计等。道路景观专业化精细化设计,使现代城市道路更加美化,配上两侧现代建筑、高档的店面,"街"更加富含人性化的韵味,对美化城市环境起到重要作用。

参考文献

- [1]城市道路交通规划设计规范(GB 50200-95)[C]. 北京,中国建筑工业出版社,1995.
- [2]周荣治. 城市道路设计[M]. 北京:人民交通出版社,
- [3]福州城市交通发展战略规划[M].福州市计委,福**州市规** 划设计研究院,2005.

南京市加快长江过江通道建设

为开发江北,跨江发展,改善城市布局,促进城市经济社会发展,自2002年起,南京市在新一轮城市建设中,加快了长江过江通道的建设。1968年12月,南京长江大桥建成通车,使长江天堑变通途,成为新中国重大建设成就。该桥是公路铁路两用桥,铁路桥全长6700m,公路桥全长4500m,是我国有史以来自行设计和施工建造的最大桥梁。位于南京长江大桥下游11km八卦洲的南京长江二桥,于1997年开工,于2001年建成通车,由两桥一路组成,全长12517m,其中南汊跨江大桥2958m,为主跨628m钢箱梁斜拉桥;北汊跨江大桥2212m,为主跨165m预应力连续梁桥;八卦洲地面道路长5698m。位于南京长江大桥上游19km大胜关的南京长江三桥,于2003年开工,于2005年10月建成通车,全长15600m,其中跨江大桥4744m,为主跨648m人字型双塔双索面钢塔钢箱梁斜拉桥,是上海一成都国道主干线的组成部分。2005年10月,位于南京长江大桥上游10km的过江隧道破土动工,将于2008年完工。隧道采用北汊盾构隧道加南汊桥梁方案,从江北浦口区黄家村下地,穿过北汊江底到江心洲为盾构隧道,从江心洲出地面,通过南汊跨江桥梁,与纬七路相接,与南岸河西新城路网连接。

南京市市政公用局 汪广丰供稿

浙江金丽温高速公路全线贯通

2005 年 12 月下旬,金(华)丽(水)温(州)高速公路丽水至青田段正式建成通车,标志者这条横贯浙江中西南的交通大动脉——金丽温高速公路全线贯通。这条高速公路全长 234 km,总投资约 127 亿元。