梁格法在桥梁异型结构中的应用

徐 强. 梁亚宁

(哈尔滨市市政工程设计院, 哈尔滨 150001)

【摘 要】 梁格法是城市立交桥梁复杂上部异型结构分析的一种便利、有效的方法。本文以某立交工程上 部异型结构为例,介绍了梁格法,指出分析时应注意的几个问题。

【关键词】 异型结构:结构分析:梁格法

【中图分类号】 TU312

【文献标识码】 B

【文章编号】 1001 - 6864(2008)02 - 0098 - 02

城市立交桥梁较为复杂的上部异型结构的设计中,常常 采用预应力(普通)混凝土连续箱梁方案,以适应交通功能对 桥梁上部结构的要求。运用梁格法对这种构造及受力状态 复杂的桥梁上部异型结构进行结构计算分析具有很多优点, 满足设计精度需要和符合设计人员的使用习惯要求。

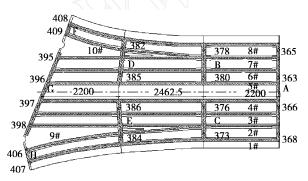


图 1 某立交桥上部异型结构

1 梁格法基本原理

梁格法力学概念明确,操作使用方便。其主要内涵是将 分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中 干邻近的等效梁格内,实际结构的纵向刚度集中干纵向梁格 构件内,而横向刚度则集中于横向梁格构件内[1]。这是梁格 法要义之所在,一切后续工作都要围绕这个内涵为中心来进 行,深入理解内涵的意义,着重把握基本原理在有限元建模 的运用,而不是过分注重模型的外形。

梁格法基于理想的刚度等效原则: 当原型实际结构和对 应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并 且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际 结构部分的内力。由于实际结构和梁格体系在结构特性上 的差异,这种等效只是近似的,对于一般的设计,梁格法的计 算精度是足够的。

2 梁格模型的建立

2.1 网格划分

梁格法的主要特点是力学概念明确,所以,在建立梁格 模型的时候,首先要弄清楚结构的传力方式,使模型的建立 尽量和实际结构的实际传力路径相一致。利用 Dr. Bridge 结 构计算程序建立上部结构离散模型,如图2所示。

(1) 在肋梁桥或异型箱梁桥上部结构中模型纵向梁格 单元的建立要以梁肋为基础 ,不可偏离梁肋 ,因为梁肋是抵

抗剪力和弯矩的主要受力构件。

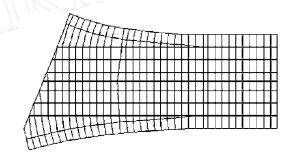
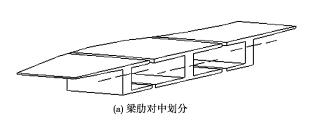


图 2 某立交桥上部异型结构离散模型

- 在端横隔梁处,以及内横隔梁处设置横向梁格单 元。
- (3) 为模拟箱梁顶板和底板在整个上部结构中对梁肋 所起到的横向联系的作用,在横向设置虚拟横梁。
- (4) 单元长度的划分,即要保证计算结果的准确性又 要考虑到计算机所耗费的机时和效率。笔者认为:单元长度 (或数量)划分的原则是在约束和关键节点必须设置节点,在 连续梁结构中纵向的一个反弯点范围内要设置 4~5 个单 元,一跨内划分4~8个单元即可很好地反映出内力沿梁长 的变化情况。


2.2 单元截面

结构运算中,通过准确地给定单元的截面形式来模拟各 单元的弯曲刚度、剪切刚度和抗扭刚度等。确定截面形式问 题有两方面的作用:第一,模拟各单元的弯曲刚度和抗扭刚 度,即结构的承担荷载的能力(将影响到内力的分配)。第 二,模拟结构的自重,作为荷载出现。截面的这两个作用是 同时进行的,但又不能简单地等同。

文献[1]中要求:梁格模型的截面划分应尽量使各部分 的形心轴位置和整体的形心轴位置相同。但这样做需要将 各单元的截面的形式进行特殊处理,会给设计者带来很大的 麻烦,经过笔者试算认为直接将截面按照梁肋之间对中切 开,其计算结果与保持一致的切法的结果相差不大,按照本 文建立的模型结果看,正弯矩相差不超过5%,满足一般设 计精度要求。截面不同的划分方式示意图如图 3。

2.3 施加荷载

(1) 一期恒载计算单元自重,当计算程序自动计算自

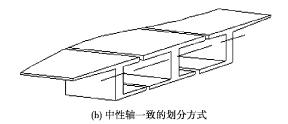


图3 截面不同划分方式示意

重时,注意结构模型叠加时自重系数的调整;二期恒载应根据施工顺序及计算程序的特点考虑,可作为集中线荷载或均布荷载施加到梁格模型。

- (2) 活荷载以行车道形式加载,考虑不同荷载组合时所产生的各种不利情况。
- (3) 温度荷载分为两种,即季节性的温度效应及日照温差效应。
- (4) 干缩徐变荷载,按照规范规定,参照季节性的温度效应做类似考虑。

2.4 支座约束

支座约束的设置影响着梁体的受力行为。由于本桥属

于异形结构,且宽跨比较大,支座的布置方法应经过多种支 座布置方案比选后确定。

经过比选,本桥共设置了20个支座,即沿横梁D、E一线设置了顺桥向的约束,在386支座处设置了横桥向的约束。 2.5 分析结果

经过不断的结构形式和约束方式的调整,最后得出较为合理的计算结果,作为设计的依据。在正常使用极限状态荷载组合 的情况下,同一横梁上的各竖向反力较为均匀,说明各个方案中支座的位置比较合理。最小支反力在匝道到处出现负值,即要求该处设置抗拉支座(如表1)。

表 1

正常使用极限状态荷载组合 支座反力汇总(x10³)

kN

F&H 横梁			G横梁			D&E 横梁			B&C 横梁			A 横梁		
点	Max	Min	点	Max	Min	点	Max	Min	点	Max	Min	点	Max	Min
408	1.06	0.36	395	2. 18	0.79	382	5.53	3.63	378	6.66	4. 12	365	2.32	1.24
409	1.11	- 0.04	396	2.06	0.93	385	6.28	4. 17	380	6.81	3.82	363	2.65	1.22
406	0.57	- 0.44	397	2.46	1.33	386	7. 14	5. 11	376	6.75	3.72	366	2. 67	1.22
407	2.02	1.38	398	2. 24	1.00	384	6.74	4.47	373	6.53	3.87	368	2.36	1.26

提取异型结构的内力,供结构设计使用。异型的内力图如图 4、图 5 所示。

图 4 承载能力极限状态荷载组合 I 异型结构的弯矩包络图

图5 承载能力极限状态荷载组合 I 异型结构的剪力包络图

3 结语

梁格法是桥梁复杂上部异型结构分析的有力工具。把复杂的多室箱梁桥的异型结构模拟成一个纵、横梁格模型,是符合实际受力情况的和设计者习惯要求的,既能得到足够的精度结果,又适宜设计人员掌握和操作。

参考文献

- [1] 戴公连,李建桥.桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
- [2] (英) E C 汉勃利著 ,郭文辉译 . 桥梁上部构造性能[M]. 北京 : 人民交通出版社 ,1982 ,5.

[收稿日期] 2007 - 08 - 18

[作者简介] 徐 强(1968 -),男,哈尔滨人,高级工程师,从事市政道路与桥梁的设计与研究工作。

(编辑 王亚清)

欢迎订阅《低温建筑技术》